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Abstract: Water is a non substitutable resource and a social good, which governments must perforce
provide to its citizens in the right quantity and quality. An integrated urban metabolism model is
useful in understanding the status quo of an urban water and sanitation system. By defining and
measuring the values of relevant hydrological performance indicators—deliverables of the model
referred to—a thorough knowledge of the present performance and the gaps, which need to be
plugged en route to a sustainable urban water infrastructure, can be obtained, as demonstrated in
this paper. This then forms the bedrock for decision-making and policy formulation for change
to be introduced top-down as well as advice, which would enable the much needed bottom-up
support to policies. The authors have chosen Delhi as the case study city, but would like to point
out that this application can be reproduced for any other town/city/region of the world. The water
balance within the chosen system boundaries shows that the annual unutilized flows, amounting
to 1443 million cubic meters, dominate the metabolic flows of water in Delhi, and the annual
groundwater withdrawal, which exceeds 420 million cubic meters, is much greater than the recharge
rate, resulting in a rapid depletion of the groundwater level. There is an urgent need thereby to
improve the rate of infiltration of stormwater and reduce the rate of runoff by focusing on increasing
the share of permeable surfaces in the city, as well as to consider the wastewater streams as potential
sources of water, while not forgetting demand side of management measures, as the pressure on
the urban water system in the city is likely to intensify with a combination of population growth,
economic development, and climate change in the near future. The recommendations provided by
the authors towards the end of the article, can, if suitable measures are undertaken and robust policies
are implemented, result in Delhi’s enjoying a water surplus in the short term, and progressively
attain complete sustainability with regard to the utilization of its water resources.

Keywords: hydrological performance; metabolic flow; urban water systems; water resources;
water security

1. Introduction

A sustainable city is characterized by, inter alia, economic vitality, long-term environmental
sustainability (which includes a greater share of green energy in the mix), good healthcare facilities,
and energy and water security. A review of the relevant literature clearly brings out the fact that
natural systems, physical infrastructure, lifestyles, behaviors, and aspirations of the populace should
be viewed interactively to design a sustainable city [1–3]. As far as water security is concerned, an
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analysis to determine what needs to be done, starts with the setting up of water balances using the
MFA (material flow analysis) approach, which tracks the flows of substances/materials/goods through
for defined periods of time and selected geographical system boundaries. However, the conventional
water balance approach, as used by many urban planners, is confined to assessing water demand of
the city and identifying water sources to meet such demand. Such a method does not provide any
insights into the hydrological performance of a city (e.g., the water flux rate and potential of utilization
of internal flows). In this paper, the authors have demonstrated the usefulness of an urban water
metabolism model (used earlier to study urban water systems in other cities by, inter alia, [4–6]), which
takes a more comprehensive view of the metabolic flows [7] of water and wastewater, and contributes
by offering insights into the current performance. These insights then enable decision-makers to devise
and structure interventions to improve the long-term water security of the region. Flows that are
neglected in the conventional approach are factored in when an urban water metabolism model is
adopted, and factors impeding water security are more easily identified.

In this paper, the authors have chosen Delhi as the ‘case-megacity’ to be analyzed for water
security and sustainability. The questions which the authors have tried to answer through the said
analysis bolstered by the urban water metabolism model are as follows.

Is Delhi self-reliant as far as its water requirements are concerned?
If yes, how long can it expect to be self-reliant?
What measures must be undertaken to ensure a more durable self-reliance and sustainability in

the long run?
Instead of starting from scratch and defining new indicators, we have taken recourse to the

hydrological performance indicators used in [8]), while taking the liberty to make some modifications
in the context of the objectives of this case study, to select dominant indicators impacting urban
hydrology. Thus, it must be stated at the outset, that the authors do not stake any claims to complete
novelty as regards as the methodology adopted. The urban water metabolism model is being used for
the first time to study the system in Delhi, and the calculation of the values of the indicators defined
by [8] serve as inputs to decision-making and policy formulation at the city–government level, as far
as much needed interventions in the near future are concerned. The questions which have been raised
above, and answered later on in the paper, make this analysis one of practical significance.

Water Resource Characteristics of the Study Area

The surface area of Delhi, also known as the National Capital Territory of Delhi (NCTD), is
approximately 1483 km2 [9]. In 2011, Delhi’s population was 16.78 million and is expected to reach
26 million by 2030 [10]. Of the total area, 1114 km2 (~75%) can be classified as urban [9]. Urban
Delhi accounts for a significant proportion of the population of the NCTD [10]. Apart from the rivers
Ganga and Yamuna, which are the main surface water sources serving the needs of the city, there are
three additional canals—Agra, Western Yamuna, and Hindon—fed by reservoir of the Bhakra-Nangal
Dam [11] (on the Sutlej River in northern India, referred to in the text hereafter, as the Bhakra storage),
which is the third largest reservoir in the country. The rapid rise in the built-up area in Delhi over the
last 40 years has happened at the expense of its farmland [12], as shown in Figure 1.
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Figure 1. (a,b) Land use pattern in Delhi (1973–2013) (Source: Landsat image compilation). 

The Himalayan rivers Yamuna and Ganga supply 1.49 million cubic meters (MCM) and 0.94 
MCM per day, respectively, while nearly one MCM comes from the Bhakra storage [9]. Recycling 
filter backwash water in water treatment plants and loss reduction by taking recourse to parallel-
lined canals, which contribute ~0.64 MCM to the water supply [9]. Due to the high pollution load on 
the river Yamuna and issues related to water sharing with the neighboring States, Delhi is highly 
dependent on groundwater sources for meeting its water requirements [13]. The net annual water 
availability (the annual recharge) is 0.29 billion cubic meters (BCM), whereas the annual groundwater 
extraction is 0.39 BCM as reported by Central Ground Water Board (CGWB) [14], and the depth to 
the water table has been increasing rapidly. Rainfall is the major source of groundwater recharge 
(Table 1), supplemented by other sources such as recharge from canals, irrigated fields, and surface 
water bodies [14]. 

Figure 1. (a,b) Land use pattern in Delhi (1973–2013) (Source: Landsat image compilation).

The Himalayan rivers Yamuna and Ganga supply 1.49 million cubic meters (MCM) and 0.94 MCM
per day, respectively, while nearly one MCM comes from the Bhakra storage [9]. Recycling filter
backwash water in water treatment plants and loss reduction by taking recourse to parallel-lined
canals, which contribute ~0.64 MCM to the water supply [9]. Due to the high pollution load on
the river Yamuna and issues related to water sharing with the neighboring States, Delhi is highly
dependent on groundwater sources for meeting its water requirements [13]. The net annual water
availability (the annual recharge) is 0.29 billion cubic meters (BCM), whereas the annual groundwater
extraction is 0.39 BCM as reported by Central Ground Water Board (CGWB) [14], and the depth to
the water table has been increasing rapidly. Rainfall is the major source of groundwater recharge
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(Table 1), supplemented by other sources such as recharge from canals, irrigated fields, and surface
water bodies [14].

Table 1. Precipitation and evaporation in Delhi (rounded-off average of past 50 years) (Ministry of
Urban Development, [15]; India Meteorological Department’s website).

Month Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Total

Rainfall (mm) 14.9 13.1 8.9 6.7 12.0 44.0 177 181 93.5 7.8 4.9 5.0 568.8

Rainy days 1.2 1 0.8 0.5 0.8 2.1 7.4 7.9 4.0 0.8 0.1 0.4 27

Evaporation (mm/d) 4.5 5.2 6.4 7.9 8.6 6.6 8.1 5.8 6.3 6.7 5.8 4.7 —

2. Methodology

2.1. Water Metabolism in Delhi—Modeling the Flows

Water flows into an urban area are split up, divided, and redirected to different end-use processes
(Figure 2). The inflow fulfills the water demand from the households (DD) and the industrial sector
(DI), and a part of it recharges groundwater aquifers and fills storage structures, thereby adding to
the stocks of water in a city; while the remaining is unutilized (U) and leaves the city (the system
boundary defined in Figure 2) in the form of surface runoff through natural or constructed drainage
systems. This unutilized flow (U) therefore includes the Yamuna River water flowing through Delhi,
the stormwater runoff, water losses in the distribution network, leakages from water pipelines, etc.
Agricultural water demand (DA) is met through natural flows and using structures such as tube wells
and canals, whereas DD and DI are met mainly through infrastructure built for the purpose, as the
water quality has to be modified prior to supply for these end-uses. There are some other minor
flows of water to commercial establishments in the city and for other public uses (DC), which are
also met through dedicated infrastructure. Changes in the stocks of water (S) are influenced by the
balance between (a) the inflow of water through natural sources (Nw) such as rainfall, river, and
imported water (Iw) from faraway places (through interstate agreements) and (b) the outflow of water
in the form of wastewater (WT), unutilized flow (WU), and evapotranspiration (Ea). The stock of
water (in other words, water available within the boundaries of the city, including both ground water
and open water bodies/ponds) in an urban area can be categorized into groundwater, ponds, and
anthropogenic storage structures (reservoirs and tanks), and this is augmented through rainwater
harvesting, diverting, or stopping the flows that would otherwise exit the city as unutilized outflows,
and infiltration of water into the soil to recharge the groundwater resources. The stock also contributes
to urban water flows internally as decentralized supplies. In addition, a small part of water is recycled
or reused (WR) in industries, agriculture, and other sectors, which helps reduce water flux.
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2.2. Calculating Water Demand—Data Gathering for the Model

Domestic water demand is estimated using a primary survey [16]. Industries draw water from
the Delhi Jal Board (DJB), from private tankers, and from privately owned groundwater sources. Due
to multiple sources of water supply, reliable estimates of water used by industries are not available.
For estimating industrial water demand, the following approaches were used.

1. Estimation of water demand from the consent-to-operate applications submitted by industries to
the Delhi Pollution Control Committee (DPCC, a statutory environmental agency in Delhi).

2. Assessment of water use through primary surveys in a sample of industries and extrapolating
the data.

3. Assessment from wastewater flows received by the Common Effluent Treatment Plants (CETPs).

Water requirements at Thermal Power Plants (TPPs) are estimated separately, using data obtained
from Central Electricity Authority [17] and Federation of Indian Chambers of Commerce [18]. Data
on water demand from commercial areas and miscellaneous areas (Dc- parks, defense services areas,
municipal, or public areas such as railway stations, railway yards, and bus terminals) were collected
from DJB. The water demand for agriculture (DA) was calculated as the product of the cropping
intensity (calculated as the percentage of gross cropped area to net sown area, i.e., number of
times crops are raised in the same field during a year) with the water use intensity of different
crops [9]. Discussions with farmers during the survey conducted in 2014/15 in this study revealed
that farmers grow vegetables during the fallow period between the main crops. The cropping intensity
in Delhi is approximately 148%. Water needs of the forestland and natural vegetation are met through
precipitation, whereas parks and green belt areas are irrigated using treated sewage or through water
tankers supplied by DJB.

It has to be mentioned at this juncture that data gathering for this article was a challenging
exercise and for the data elements which have been fed into the model, to calculate the output
metrics/indicators, recourse has been taken to time-averaged values, or extrapolations from the
available historical data or collection of primary data. In this context, the researchers have succeeded
in tiding over the obstacles to data access.

2.3. Water Supply Sources

Potential supply of fresh water was estimated for surface water (including water sourced from
faraway sources as imports) and groundwater sources. The waters of the river Ganga flow from the
Upper Ganga Canal through a pipeline and hence evaporation losses are negligible. Evaporation
and other losses from open canal are assessed as 30% (personal interaction, Department of Irrigation,
Govt. of Haryana). Groundwater recharge potential of the city is estimated using rounded-off average
of the past 50 years of rainfall and pan evaporation data (refer Table 1) and the methodology used
by [19]. The total annual rain-fed groundwater recharge is calculated by multiplying the area with its
recharge potential. Deeper underground and lateral flows from external sources are excluded due to
non-availability of data.

2.4. Urban Hydrological Performance Indicators

2.4.1. Water Use Intensity (WUI)

WUI, measured in MCM/square kilometers/year, helps in comparing cities for their water use
efficiency, water infrastructure, and water sustainable urban design. It is estimated as shown below, in
Equation (1).

WUI =
DD + DA + DI + DC

A
(1)

In Equation (1), DD, DA, DI, and DC are the quantities of water supplied for domestic, industrial,
agriculture, and commercial purposes, respectively, and A is the surface area of the city in square
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kilometers. Water demand includes real demand, water supply includes both centralized and
decentralized supply, and water lost includes distribution losses like leakages.

2.4.2. Overall Water Balance (OWB)

OWB, expressed as a percentage, provides information about losses from planned water
infrastructure. It is the ratio, expressed as a percentage, of total inflow to total outflow, estimated using
Equation (2).

OWB =

[
Rf + Sw + (Iw + Nw − Losses in Iw and Nw )

WU + WT + Wa

]
× 100 (2)

In Equation (2), Rf is total annual precipitation and Sw is water inflow from stock. Iw and Nw are
the imported water and natural water flows, respectively, which are diverted for urban use. Together,
these constitute the centralized urban flow Cw, WU is unutilized water, WT is wastewater, which may
be treated or untreated, and Wa is runoff from agriculture.

2.4.3. Supply Centralization (SC)

SC, expressed as a percentage, which measures the dependency of urban water demand on
centralized public infrastructure, is estimated using Equation (3). Lower the value of SC, greater is
the decentralized nature of the water supply, which implies a greater reliance on groundwater in the
private water market. Cw and Sw, as already defined, are the centralized urban flow and the water
inflow from stock, respectively.

SC =
Cw

Cw + Sw
× 100 (3)

2.4.4. Rainfall Harvesting (RH)

RH (in %) is the theoretical value representing the percentage of decentralized supply accounted
for the total rainfall, if harvested fully, is estimated using Equation (4). Sw and Rf have already been
defined earlier.

RH =
Sw

Rf
× 100 (4)

2.4.5. Centralized Rainfall Supply Replaceability (CSR)

CSR (measured as a percentage) is the percentage of centralized supply that can be replaced by
rainfall is estimated using Equation (5). Cw and Rf have already been defined earlier.

CSR =
Rf
Cw

× 100 (5)

2.4.6. Total Rainfall Use Substitutability (TUR)

TUR is the percentage of total urban water needs that can be met by rainfall, is estimated using
Equation (6). Cw, Sw, and Rf have already been defined earlier.

TUR =
Rf

Cw + Sw
× 100 (6)

2.4.7. Wastewater Potential for Water Supply (TURw)

TURw—as a percentage—gives the potential of wastewater flowing through built infrastructure
to meet urban water demand, and is estimated using Equation (7). WT, defined earlier, is treated or
untreated wastewater.

TURw =
WT

Cw + Sw
× 100 (7)
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2.4.8. Turnover Rate

Turnover rate (as a percentage) is the reciprocal of residence time of water within a system. A
higher turnover rate means a lower residence time of water and an indication that the urban area is
moving away from sustainability instead of towards it. The turnover rate can be measured as three
different variants: Overall turnover rate (OTR), Anthropogenic turnover rate (ATR), and Rainfall
turnover rate (RTR). OTR estimates the residence time of water in a city, ATR has implications for
the water quality of the region (the longer the turnover time, the greater the pollution, unless treated
before discharge), and RTR measures the efficiency of stormwater management and probability of
urban flooding. These are estimated using Equations (8)–(10), respectively. Most of the parameters
have already been defined earlier. ‘S’ in the three equations, is the stock of water.

OTR =
(Iw + Nw − Losses in Iw and Nw ) + Sw + Rf

S
(8)

ATR =
(Iw + Nw − Losses in Iw and Nw ) + Sw

S
(9)

RTR =
Rf
S

(10)

2.4.9. Water Budget

The water budget—in MCM per year—indicates changes in water reserves of a city, is estimated
using Equation (11). In Equation (11), ∆S is the change in the stock of water in MCM a year and EaU is
the evaporation loss from urban surface flows.

Rf + Nw + Iw − (Losses in Iw and Nw ) = WT + Wu + Ea + EaU + Wa ± ∆S (11)

3. Results and Discussion

3.1. Water Demand in Delhi

Calculated using a per capita daily water requirement of 76 liters (lpcd or liters per capita per
day) [16], for a total water-consuming population of 16.78 million, the ‘real domestic water demand’ is
estimated at 465.7 MCM a year. Nearly 18% of this demand is met by decentralized groundwater by
individual households, ~9% is met through groundwater stock harnessed by the Delhi Jal Board, for
centralized supply, another 4% is through groundwater extracted by suppliers in the private water
market, and the rest is met through surface water sources through centralized supply. The share
of groundwater in total domestic demand is therefore estimated at 144.5 MCM a year, of which,
approximately 102.4 MCM a year is from decentralized sources.

The industrial water demand (excluding TPPs) in Delhi is 23.7 MCM a year. From the sample
survey of the industries conducted in this study, ~32% of this demand is met through decentralized
groundwater sources. Specific water consumption of TPPs is 21.4 MCM a year, nearly 35% of
which is met through treated sewage and the remaining by diverting flow through barrages on
the Yamuna. Total wastewater (cooling water which is warmed up within the plants) released by
the TPPs is 1.4 MCM a year. Based on the discussions with farmers carried out in this study, it was
assumed that 40% of this demand is met through groundwater, 20% through treated sewage, and the
rest through canals or surface water irrigation. The Government of Delhi reports that commercial
water consumption is 52.9 MCM a year [9]. Miscellaneous water demand—totaling 61.7 MCM a
year—includes parks, defense services areas, and other municipal areas. A survey carried out as part
of this study revealed indiscriminate use of tube wells to draw groundwater up to the surface, by
individual entities. The share of the households in the decentralized withdrawal of groundwater was
found to be 18%, and the same figure was assumed for commercial demand.
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The current annual water needs of Delhi are estimated at ~1017.7 MCM (see Table 2). The water
requirements, as estimated by the DJB, are 1891 MCM a year [9]. There is thus a huge disparity between
the two estimates, the estimate of the authors of this paper being only about 54% of the DJB estimate.
No information is available about the estimation method used by the DJB. Some plausible reasons for
the disparity are as follows.

(a) Domestic water requirement constitutes nearly 74% of the total. The DJB’s norm for estimating
the domestic requirements is 172 lpcd [9], whereas the real demand is estimated as 76 lpcd, on
the basis of the current lifestyles of, and the use of water-related appliances by the residents of
Delhi [16].

(b) The estimate of industrial water demand is fraught with uncertainties. The industrial profile
of Delhi has changed significantly over the past decade, and it is not clear whether the DJB has
considered these changes.

Table 2. Annual water needs of the city of Delhi.

Sector Quantity
(Million Cubic meters /year) Remarks

Domestic (DD) 465.7 Based on sample survey. Real demand
instead of water supplied.

Industrial (DI) 23.7
Modeled data. Inadequate and
uncertain information about industrial
units in Delhi.

Thermal power plants 21.4 Modeled data.

Agriculture (DA) 392.2 Modeled data.

Commercial and others (DC) 114.6 Reported value. Two-year-old data.

Total 1017.6 —

Considering that under the best-case scenario, water distribution losses should be no more
than 15%; the annual water demand is estimated at 694.7 MCM or 119 lpcd (only urban demand,
excluding demand for agriculture and TPPs). The DJB currently supplies 1393.2 MCM a year
(they use a normative value of 270 lpcd for water supply infrastructure design, to account for the
leakages). In addition, the annual shares of decentralized groundwater in urban supplies are as follows:
102.4 MCM for the domestic sector, 7.6 MCM for the industrial sector, and 20.5 MCM for commercial
and other uses. Therefore, the total annual water supply for urban uses is ~1524 MCM. Hence, it can be
considered that approximately 829 MCM is lost annually in the form of distribution losses and leakage
or wastage at the consumer level. This lost water contributes to the unutilized flows. The estimates
worked out in this paper are consistent with the popular perception of huge water losses in Delhi.

3.2. Water Supply Potential

It is estimated that, on average, 364.1 MCM of water is lost (is unused) annually as surface runoff,
of which, 273 MCM occurs during the monsoon for want of storage capacity [15]. Therefore, the total
water available from the Yamuna is approximately 183 MCM a year (547 MCM, as given in Figure 3,
minus 364.1 MCM). Of this, substantial quantities (~30%) are lost through evaporation, infiltration,
and other ways, accounting for ~55 MCM a year. Thus, the actual water available from the Yamuna is
approximately 128 MCM a year. Delhi imports water from the Upper Ganga Canal through a pipeline
(343 MCM a year). Of late, Delhi has been receiving 361 MCM of water per year from Bhakra through
an open canal, which joins the Western Yamuna Canal; considering evaporation and other losses at
30%, this figure is reduced to 253 MCM a year. The actual water available from all these sources
(surface water) is thus approximately 72 MCM a year (128 plus 343 plus 253).
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Table 3 shows 182 mm as the balance of useable rainfall in a year that can be absorbed by an
aquifer or is lost through runoff, with the month of August contributing well over 50% of this, and
July registering the greatest loss in terms of evaporation. With an infiltration potential of 50%, one gets
a recharge potential of 91 mm a year. Of the total area of Delhi, as referred to earlier, ~75% is urban
(Figure 1). Again, simple wetting (less than 2.5 mm a day) will not contribute to this source. Of the
452 mm received in the monsoon, excluding evaporation and line losses, a maximum of 315 mm may
be recovered. Total water harvesting can thus add ~40 mm a year to groundwater recharge. A large
fraction of this water is imported from other river basins. The total annual rain-fed groundwater
recharge is estimated at 194.3 MCM (surface area of 1483 km2 × 131 mm).

Table 3. Rainfall and ‘potential rates’ of evaporation.

Month Rainfall (mm) Rainy Days
(>2.5 mm)

Potential Rate
(cm/day)

Evaporation
Loss (mm) Balance (mm)

July 177 4 0.57 111 66

August 181 5 0.41 84 97

September 94 2 0.44 75 19

Total 452 11 270 182

3.3. Water and Wastewater Flows Through the City

Figure 3 shows the water flows in the metabolism model constructed for this study. After
accounting for losses, the net centralized flow (Cw) is 864.8 MCM a year (128 MCM a year as net Nw,
596 MCM a year as net Iw, and 140.8 MCM a year from groundwater extracted by the DJB), 16% of
which is accounted for by groundwater.

Rf brings 844 MCM to Delhi, which is uniformly distributed throughout the city. Of this,
401 MCM is lost annually through Ea, approximately 194 MCM goes into groundwater recharge,
and the remaining 249 MCM is a constituent of WU. A part of Rf may be used in agriculture, though
the volume would be relatively negligible.

The total annual decentralized flow is 287.5 MCM a year, 130.5 MCM a year of which meets
the urban end-uses, while the remaining 157 MCM a year caters to the agricultural sector in rural
Delhi. Adding 140.8 MCM a year extracted by DJB for centralized supply, Sw is therefore estimated
at 428.3 MCM/year, a value which is ~10% greater than the reported value of 390 MCM/year [14].
Annual stock of surface water in Delhi is estimated by assuming that the depth of surface water is 30 cm
and the area of surface water bodies is 27.72 km2 (which is 8.3 MCM), and the annual groundwater is
taken from CGWB assessment as 290 MCM [14]. Therefore, total stock (S) of surface and ground water
is 298.3 MCM a year.

The net flow of water for urban functions is 694.7 MCM a year. In addition, TPPs and agriculture
require 21.4 MCM and 392.2 MCM per year, respectively. Therefore, the total annual water demand for
all the sectors in Delhi is 1108.3 MCM. Nearly, 42% of this demand stems from the domestic sector.

WU in Delhi is 1443.4 MCM a year: 364 MCM from Nw, 249 MCM from Rf, 1.4 from TPPs, and
829 MCM from distribution losses and wastage. Much of this flow is through unlined open drains.
Approximately 10% (144.3 MCM a year) of this WU is assumed to recharge groundwater [20], another
10% is lost through EaU, 30% (~433 MCM a year) mixes with sewage going into the wastewater
treatment plants, and the remaining 721.6 MCM leaves the city as unutilized water. Of the total water
used for urban end-uses, 80% comes out as WT. This, when added to the diverted WU of 433 MCM
(30% of total WU) brings the value of total WT (load on the wastewater treatment plants) to 989.4 MCM
a year. Of the volume of wastewater treated annually, 7.4 MCM is used in TPPs as cooling water,
78.5 MCM in agriculture for ‘irrigation’, and ~2 MCM in public parks (irrigation) and other commercial
areas (cleaning, etc.). WR in domestic and industrial sectors is negligible. Total WR is thus estimated to
be ~87.9 MCM a year; which implies that 901.5 MCM flows back to the hydrosphere every year.
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Figure 3. Urban water metabolism in Delhi.

3.4. Hydrological Performance

Hydrological performance indicators for Delhi are summarized in Table 4. WUI of Delhi is about
2.5 times greater than those of Australian cities [8]. One of the reasons for the high WUI in Delhi could
be the inclusion of rural areas (where agriculture is a big end-use sector) in the model. Since water
demand for agriculture is just 38% of the total water demand of the region, it means that a significant
amount of water is wasted in the form of leakage in water supply infrastructure and as runoff (given
the absence of water storage structures).

Table 4. Hydrological performance indicators.

Indicators Units Values

Water use intensity (WUI) MCM/km2/year 0.732

Overall water balance (OWB) % 136.7

Supply centralization (SC) % 66.9

Rainwater harvesting (RH) % 50.7

Centralized rainfall supply replaceability (CSR) % 97.6

Total rainfall use replaceability (TUR) % 65.3

Wastewater potential for water supply (TURw) % 78.2

Anthropogenic turnover rate (ATR) Number of times per year 5.08

Rainfall turnover rate (RTR) Number of times per year 2.83

Overall turnover rate (OTR) Number of times per year 7.91

Change in stock (∆S) MCM/year −236

The share of the centralized water supply is ~67%, which is low and points to the existence
of a private water market. If one accounts for the 20% water losses in the form of infiltration and
evaporation [20] the OWB should be at the most 120%. In Delhi, this is 136.7%, indicating that water
inflows add to the existing stock of water.
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Delhi is a net water deficit region because even under the best-case scenario, Rf can meet only
65.3% of Delhi’s current water needs (based on TUR) and can replace ~50.7% of the decentralized
and 97% of the centralized supply. Therefore, water demand of the city far exceeds the natural water
resources it has been endowed with. The supply from river Yamuna therefore must be augmented at
all costs. Due to the lack of rainwater harvesting facilities in the city, Rf is not able to attain its potential
value of 65% (TUR). The key to sustainable water supply for Delhi then, is the utilization of WT

(use potential is 78.2%). If we consider the potential of rainfall utilization coupled with strategies that
reduce water losses in the system and realistic domestic water supply norms, Delhi has the potential to
be a net water exporter in the short term, and to evolve over time to become a water sustainable city.

The OTR is 7.91, which means that water remains in the city for ~46 days before it leaves the
system. We do not have similar data for other regions to judge whether the residence time for Delhi
is high or low. The ATR for Delhi is 5.08, which validated by presence of pollution in its water
bodies [14,21]. Delhi’s RTR is 2.83 times a year, which reflects on the poor stormwater management
and presence of frequent urban flooding.

3.5. Towards Water Sustainability

The urban metabolism model when applied to study water and wastewater flows into, within
and out of a city, provides a sound conceptual entry point to understand the water-related challenges
faced by the city [22]. However, the indicators derived are at a macrolevel, and the inferences drawn
from them can lead to some flawed conclusions if they are not interpreted judiciously. If the rapid
increase in Delhi’s population over the last few decades and the city’s indiscriminate spatial sprawl
are superimposed over the metabolic water balance, the hydrological performance indicators will tell
a different story. The share of imported water in the centralized supply is more than 50%. The sources
of this water are a few hundred kilometers from the city boundaries. On one hand, the imports reflect
the linear approach and continued augmentation of water resources from outside the city limits; on
the other hand, the imports also indicate the pressure to meet the growing demands of a growing
population. The population of Delhi has increased nearly tenfold over the last five decades (at an
average annual rate of 4.7%). Water supply capacity has increased by a factor of 23 over the same
period, and yet a significant population is without access to treated and piped water supply and
sanitation facilities [23]. However it must be noted here that the increase in demand for water has
been not just from households, which have burgeoned over time, but also commercial and industrial
end-users. An alarming negative fallout has been the increase in the depth to the groundwater table.
The stage of groundwater development is 137% [14], which is critical. Such a situation makes Delhi
highly vulnerable and increases its water insecurity.

Exploring resources within the city is essential if Delhi is to become independent of such
uncertainties and augment its future supplies sustainably. This is possible if the following is achieved.

1. Wastewater can be looked upon as a water resource, which can be utilized after proper treatment
(as advocated by Alves [24] for Portugal and Opher [25] & Opher [26] for Israel)—it can meet
78.2% of the total needs. The use of groundwater can be discontinued altogether if even half the
potential of wastewater is tapped.

2. Stormwater has the potential to reduce the decentralized use of groundwater, if rainwater
harvesting and artificial ponds can be created, and if water-permeable surfaces can be
incorporated into the cityscape.

3.6. Summarizing the Results and Observations Made

The total annual water inflow in Delhi is 2095 MCM whereas the discharge is about 1621 MCM
(excluding evaporation and transpiration). Delhi’s own renewable stock of surface water and
groundwater is 338.2 MCM. Nearly 50% of the water flowing through the system remains unutilized:
364 MCM a year as stormwater (mostly during the monsoon months) and 545 MCM a year as
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evaporation. The remaining inflow is utilized only once, except for 7.38, 78.5, and 2 MCM of
cascaded water used by TPPs, agriculture, and public uses, respectively. Some other minor reuses of
water—treated sewage to irrigate city parks and the surrounding farms—have not been quantified in
this model. Annual WT flow from the city is 901.5 MCM, to which industry contributes approximately
19 MCM and TPPs 3.3 MCM. The residence time of water in the city is 46 days and the ATR is 5 times
a year.

Real urban water demand is assessed at 694.7 MCM a year (equivalent to 119 lpcd). This includes
reasonable water losses of 15%. The normative value of 270 lpcd, as used by the DJB, is therefore
excessive in today’s context, which leads to inefficient use of water. The WUI of Delhi is high and the
share of centralized supply in the total water supply is only 66.9%, which points to the existence of a
private water market and lack of regulatory control over private groundwater abstraction. Total annual
groundwater recharge by rain and urban infiltration is 338.3 MCM, and groundwater withdrawal is
428.3 MCM a year. This explains the decline in the water table beneath the surface in Delhi.

The current population of Delhi is 10 times that in 1951. One may think of some ‘could-have-been’
factors, which may have enabled the city to trim down its water consumption. There are other factors
which other factors may have helped the city in managing its water resources in a better way:

1. Decreasing the area under tillage
2. Focus on less water-intensive crops
3. Restructuring of the industry base over the last decade and a half, in favor of industries with

smaller water footprints
4. Early changes in lifestyle habits and better control over the use of water using white goods like

washing machines and dishwashers

Unfortunately, these possibilities, which went begging, have not been acknowledged by the local
governments that have been. The inefficiencies of the urban water infrastructure have never been given
adequate attention. Consumer habits and lifestyles, have over the years, expanded the trans-boundary
water footprint of the city, courtesy the rise in imports of ‘embedded water’ in its less visible forms like
food, industrial goods, and electricity from outside the city boundaries. It is noteworthy that almost
half of household expenses in the city are for food and electricity.

One of the hidden benefits of urbanization (rise in demand from households which have a lower
WUI), at the expense of farmlands and water-intensive agricultural activities, is that the rise in water
demand can be controlled. This is offset (or more than offset in some cases), by the fact that a growth in
built-up areas (which reduces the average permeability of land surfaces) implies lesser recharge of the
groundwater, augmenting the surface runoff and the nonutilized water flow. It follows that the city’s
water stock will decrease over time, making it more vulnerable to fluctuations in water availability
and less resilient to changes in the future.

4. Conclusions and Recommendations

The authors, by availing of an urban metabolism model to study the water and wastewater
flows [22] into, within, and out of Delhi, have successfully documented the status quo, identified the
‘hotspots’ which need to be addressed by a combination of top-down policy-making and bottom-up
demand side management, derived performance indicators and suggested approaches which could
be adopted to transit slowly but surely and steadily to more durable water sustainability. This
promises to be of practical significance to decision-makers in the Indian capital, who have been
availing of conventional water balance models hitherto. The absence of a comprehensive outlook has
jeopardized water security in Delhi, and hindered effective water management, as observed in the
previous subsection. The urban water metabolism approach explained by [27] has been modeled in
this study applied to Delhi, to present the status quo in a refined manner and motivate the planning of
interventions is what the authors posit as a novelty of this paper and a key contribution to the sphere
of applications of metabolism models in general.
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The questions that the authors posed at the beginning of the paper have been answered, thanks
to the aforesaid model, the availability of data from a plethora of sources and the indicators, which
helped the authors to quantify the status quo, for the sake of possible comparison with other cities in
the world. A brief summary of the results and the insights gathered therefrom has been presented
in the following paragraphs. On the basis of this understanding of the ‘what-is’ and ‘what-can-be’,
the interventions can be analyzed from a sustainability perspective using industrial ecology tools like
E-LCA, LCC and S-LCA (as has been done for instance, for Israel, by [25,26]

The key takeaway message from this paper is that megacities have the potential to supply water
to other regions in the short term, and set examples for them to follow, as water sustainable regions.
This paper, using the metabolism approach for a chosen case city, has emphasized on the need for a
conscious diversification of water sources (by factoring in more of the wastewater and the stormwater)
and also effective demand side management, whereby water must be used more wisely. There is an
urgent need thereby to improve the rate of infiltration of stormwater and reduce the rate of runoff,
by increasing the share of permeable surfaces in the city (permeable paving for instance), as well
as consider the wastewater streams as potential sources of water [28] (Angelakis and Synder 2015),
while not forgetting demand side management measures, as the pressure on the urban water system
in the city is likely to intensify with a combination of population growth, economic development,
and climate change in the near future. Furthermore, real water demand of megacities should be
assessed periodically in more realistic terms than using historical normative values for design of urban
water infrastructure.
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